CsPbI2.25Br0.75 solar cells with 15.9% efficiency
Zhimin Fang, Ling Liu, Zhiming Zhang, Shangfeng Yang, Fangyang Liu, Mingzhen Liu and Liming Ding

Citation: Science Bulletin 64, 507 (2019); doi: 10.1016/j.scib.2019.04.013

Articles you may be interested in

Defect passivation of CsPbI2Br perovskites through Zn(II) doping: toward efficient and stable solar cells
SCIENCE CHINA Chemistry 62, 1044 (2019);

Stable β-CsPbI3 inorganic perovskite deliver photovoltaic efficiency beyond 18%
SCIENCE CHINA Chemistry

Effect of temperature on the efficiency of organometallic perovskite solar cells
Journal of Energy Chemistry 24, 729 (2015);

Planar copolymers for high-efficiency polymer solar cells
SCIENCE CHINA Chemistry 62, 9 (2019);

High-performance polymer solar cells with >10% efficiency
SCIENCE CHINA Chemistry 58, 190 (2015);
Short Communication

CsPbI$_{2.25}$Br$_{0.75}$ solar cells with 15.9% efficiency

Zhimin Fanga,b,1, Ling Liub, Zhiming Zhangb, Shangfeng Yanga,*, Fangyang Liuc,*, Mingzhen Liud,*, Liming Dingb,*

a Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
b Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
c School of Metallurgy and Environment, Central South University, Changsha 410083, China
d Center for Applied Chemistry, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China

Article info

Article history:
Received 28 March 2019
Received in revised form 2 April 2019
Accepted 3 April 2019
Available online 5 April 2019

Organic-inorganic perovskite (ABX$_3$) solar cells (PSCs) have attracted wide interest in recent years [1]. The power conversion efficiency (PCE) has increased up to 23.7% (NREL Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html, Accessed January 2019). However, organic-inorganic PSCs suffer from poor thermal stability due to the volatile organic A-site cations. Recently, all-inorganic perovskite materials CsPbX$_3$ (X = I, Br) have received great attention due to their remarkable thermal stability [2]. The inorganic perovskites without volatile components now become promising materials for PSCs. Besides, CsPbI$_{1-x}$Br$_x$ perovskite materials show tunable bandgaps from 1.73 to 2.3 eV when x changes from 0 to 3. This makes it possible to fabricate tandem solar cells by combining with silicon solar cells or narrow bandgap organic solar cells.

The PCE of solar cells is determined by three parameters, J_{sc}, V_{oc}, and FF. Inorganic PSCs have high V_{oc} and relatively low J_{sc} because of its wide bandgap, and the PCE is lower than 18% till now. The J_{sc} can be improved via improving the crystallinity and increasing the grain size of perovskite film, and using charge transport layers with high charge mobility. The V_{oc} correlates with the energy loss in the device. The energy level matching between perovskite layer and electron/hole transport layers (ETLs/HTLs) affects V_{oc} significantly [3]. The FF relates to the quality of perovskite film, and the contact between perovskite and charge transport layers. PSCs have a typical sandwich structure, and the substrates (ETLs or HTLs) affect the growth of perovskite films significantly. Based on the above analysis, it is important to choose suitable ETLs or HTLs for PSCs. Among the ETLs, ZnO has excellent electron transport property and suitable conduction band energy level, being a promising ETL material for inorganic PSCs [4]. However, on ZnO surface, there exists hydroxyl groups and oxygen deficiency, which could accelerate perovskite decomposition and limit the PCE. In organic-inorganic PSCs, magnesium and aluminum were doped into ZnO to improve device stability, but the PCE is relatively low [5,6]. Cao et al. [7] achieved a PCE of 21.1% by using MgO and protonated ethanolamine passivated ZnO as ETL. They also constructed a ZnO-ZnS layer as ETL, and a PCE of 20.7% was obtained [8]. However, these approaches need high annealing temperature to prepare ETL. Hence, it is very important to find a simple and effective method to modify ZnO surface to improve both device efficiency and stability. In this work, we used 3,3-diphenylpropylamine (DPPA)-modified ZnO as ETL (Fig. 1a). DPPA can effectively passivate the defects on ZnO surface through Zn–N bond formation. Solar cells with this modified ZnO gave enhanced V_{oc}, J_{sc}, and FF. A PCE of 15.98% was achieved, which is the highest efficiency for inorganic PSCs with ZnO ETL.

The modified ZnO film was prepared by spin coating a DPPA/isopropanol solution onto ZnO film (Fig. 1b). To clarify the influence of DPPA modification to ZnO surface, we performed X-ray photoelectron spectroscopic (XPS) analysis. After DPPA modification, N 1s signal appears (Fig. S1a online). ΔV_{oc} is assigned to the bond formation on ZnO surface. O 1s peaks for modified ZnO films (Fig. S2a online), suggesting the increase of negative charge on N atom within –NH$_2$ group. These results indicate the formation of Zn–N bonds. O 1s XPS spectra show two peaks at ~530.2 and 531.5 eV, which could be assigned to O$^{2-}$ ions in Zn–O bonds and oxygen deficiency, respectively.

References

For DPPA-modified ZnO, the decline of 531.5 eV peak indicates that the defects on ZnO surface have been effectively passivated by DPPA [9]. Fig. S3 (online) presents the Tauc plots and ultraviolet photoelectron spectroscopy (UPS) spectra of ZnO and ZnO/DPPA films. Both films show a bandgap of 3.32 eV. However, a slight shift to higher energy was observed. The VB/CB levels of ZnO and modified ZnO are –7.01/–3.69 eV and –6.93/–3.61 eV, respectively.

The precursor solution was prepared by dissolving CsI, PbI\textsubscript{2}, PbBr\textsubscript{2} with a molar ratio of 0.8:0.5:0.3 in the mixed solvent DMF/DMSO (4:1, \textit{v/\textit{v})}. The energy dispersive X-ray (EDX) was performed to analyze the composition of the perovskite film (Fig. S4, Table S1, online), and the material was named as CsPbI\textsubscript{2.25}Br\textsubscript{0.75}. Fig. S5 (online) presents the XRD patterns for CsPbI\textsubscript{2.25}Br\textsubscript{0.75} films on different substrates. The patterns show two diffraction peaks at 14.5° and 29.4°, which can be assigned to (1 0 0) and (2 0 0) planes, respectively. In XRD pattern of CsPbI\textsubscript{2.25}Br\textsubscript{0.75} film on ZnO, the diffraction peak at 9.8° stands for (0 0 2) plane of the nonphotoactive \textit{d}-phase. The diffraction intensity of perovskite on ZnO/DPPA is higher than that of perovskite on ZnO, suggesting the higher crystallinity.

The morphology for CsPbI\textsubscript{2.25}Br\textsubscript{0.75} films was studied by Scanning Electron Microscope (SEM). Fig. 1c and d reveals the formation of CsPbI\textsubscript{2.25}Br\textsubscript{0.75} crystal film with larger grains on modified ZnO. The increase in grain size led to less grain boundaries, thus reducing charge recombination. The UV–vis absorption spectra for CsPbI\textsubscript{2.25}Br\textsubscript{0.75} films are shown in Fig. S6a (online). The Tauc plot for CsPbI\textsubscript{2.25}Br\textsubscript{0.75} film on ZnO is shown in Fig. S6b (online), indicating a bandgap of 1.87 eV. The VB/CB levels for CsPbI\textsubscript{2.25}Br\textsubscript{0.75} perovskite are –5.46/–3.59 eV (Fig. S6c online). The higher CB of modified ZnO matches well with the CB of CsPbI\textsubscript{2.25}Br\textsubscript{0.75} (Fig. 1e), which can reduce the energy loss in electron transfer from perovskite to ZnO.

The photoluminescence (PL) spectra for CsPbI\textsubscript{2.25}Br\textsubscript{0.75} films on glass, glass/DPPA, ZnO and ZnO/DPPA substrates are shown in Fig. S7 (online). Compared with CsPbI\textsubscript{2.25}Br\textsubscript{0.75} film on glass, the film on glass/DPPA shows an enhanced PL intensity, suggesting better crystallinity on ZnO/DPPA substrate as XRD indicated. Similar to ZnO, ZnO/DPPA can effectively quench the fluorescence of CsPbI\textsubscript{2.25}Br\textsubscript{0.75}. We measured current–voltage (I–V) characteristics in dark for devices with a structure of ITO/ZnO (ZnO/DPPA)/Perovskite/PC\textsubscript{61}BM/Ag and evaluated the trap density (Fig. 1f).

$$V_{\text{TFL}} = \frac{en_{\text{trap}}L^2}{2\varepsilon\varepsilon_0}.$$

where e is the electron charge, n_{trap} is the trap state density, L is the thickness of the perovskite layer, ε is the relative dielectric constant.

Fig. 1. Interface engineering in inorganic perovskite solar cells. (a) The structure of DPPA. (b) The preparation of ZnO/DPPA films. (c) SEM image for CsPbI\textsubscript{2.25}Br\textsubscript{0.75} film on ZnO. (d) SEM image for CsPbI\textsubscript{2.25}Br\textsubscript{0.75} film on ZnO/DPPA. (e) Energy level diagram. (f) Dark I-V curves for electron-only devices with a structure of ITO/ZnO (ZnO/DPPA)/Perovskite/PC\textsubscript{61}BM/Ag.
for CsPbI\textsubscript{2.25}Br\textsubscript{0.75}, and \(\varepsilon_0\) is the vacuum permittivity. The \(V_{oc}\) for perovskite film on DPA-modified ZnO is lower than that of perovskite film on pristine ZnO, suggesting a reduced electron trap density. Low trap density favors to reduce charge recombination.

Solar cells with a structure of ITO/ETL/CsPbI\textsubscript{2.25}Br\textsubscript{0.75}/PTAA/MoO\textsubscript{3}/Ag were made and the concentration of DPPA solution was optimized. The device performance data are listed in Table S2 (online). Compared with the control device, all solar cells with DPPA modification gave an enhanced PCE (Fig. S8 online). The increments of \(V_{oc}\) and \(J_{sc}\) result from the energy level matching between ZnO and perovskite. As the concentration further increases, \(J_{sc}\) decreases because of DPPA insulation. The increase of \(F_{f}\) was due to reduced charge recombination, which results from the reduced defects on ZnO surface and lower trap density in perovskite film. The optimal concentration of DPPA solution was 2 mg mL-1. \(J–V\) curves for the best cells with ZnO or modified ZnO as ETL are shown in Fig. S9a (online). The cells with ZnO ETL gave a \(V_{oc}\) of 1.19 V, a \(J_{sc}\) of 16.10 mA cm-2, an \(F_{f}\) of 71.81% and a PCE of 13.77%. The cells with ZnO/PTAA ETL offered enhanced \(V_{oc}\) (1.23 V), \(J_{sc}\) (17.04 mA cm-2), and \(F_{f}\) (76.49%), leading to a PCE of 15.98%. The integrated photocurrents from EQE spectra for the cells with ZnO and ZnO/PTAA ETL are 15.40 and 16.13 mA cm-2, respectively (Fig. S9b online). The \(F_{f}\) for \(J–V\) curves were checked (Fig. S10a, Table S3, online), and CsPbI\textsubscript{2.25}Br\textsubscript{0.75} solar cells show a significant decrease in hysteresis after DPPA modification. The suppressed hysteresis resulted from the reduced defects on ZnO surface and better quality of perovskite film. \(J_{sc}\) stability for the best cell was studied (Fig. S10b online). After being stored in a N\(_2\) glovebox for 55 days, CsPbI\textsubscript{2.25}Br\textsubscript{0.75} solar cells with modified ZnO ETL show a better stability (Fig. S11 online). With this modified ZnO ETL, CsPbI\textsubscript{2.25}Br\textsubscript{0.75} solar cells gave a PCE of 14.86% with an impressive \(V_{oc}\) of 1.27 V (Fig. S12, Table S4, online).

In summary, we have developed an effective approach to modify ZnO ETL. The defects on ZnO surface were passivated due to Zn–N bond formation. CsPbI\textsubscript{2.25}Br\textsubscript{0.75} film on modified ZnO exhibits improved crystallinity, larger grain size and reduced trap density. The conduction band of modified ZnO matches that of perovskite well, and CsPbI\textsubscript{2.25}Br\textsubscript{0.75} solar cells with modified ZnO ETL gave enhanced \(V_{oc}\), \(J_{sc}\) and \(F_{f}\). A PCE of 15.98% was achieved, which is the highest for inorganic PSCs with ZnO ETL. With modified ZnO as ETL, CsPbI\textsubscript{3}Br solar cells gave a PCE of 14.86% with an impressive \(V_{oc}\) of 1.27 V. Optimally modifying the interfaces or surfaces, we can significantly enhance the performance of PSCs.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

L. Ding thanks the National Key Research and Development Program of China (2017YFA0206600) and the National Natural Science Foundation of China (51773045, 21572041 and 21772030) for financial support. The PL spectra were taken by Miss Xue Jia.

Author contributions

Zhimin Fang, Ling Liu and Zhiming Zhang performed the experiments. Shangfeng Yang, Fangyang Liu and Mingzhen Liu participated in the discussion on experimental results. Liming Ding directed this project.

References

Zhimin Fang got his B.S. degree from Sichuan University in 2015. Now he is a Ph.D. student at University of Science and Technology of China under the supervision of Prof. Shangfeng Yang. Since September 2017, he has been working in Liming Ding Lab at National Center for Nanoscience and Technology as a visiting student. His work focuses on perovskite solar cells.

Shangfeng Yang got his Ph.D. degree from Hong Kong University of Science and Technology in 2003. He then joined Leibniz Institute for Solid State and Materials Research, Dresden, Germany as an Alexander von Humboldt Fellow and a Guest Scientist. In December 2007, he joined University of Science and Technology of China as a full professor. His research interests include the synthesis of fullerene-based nanocarbons toward applications in energy devices.

Fangyang Liu received his B.S. degree in 2006 and Ph.D. degree in 2011 from Central South University, where he then worked as a lecturer and associate professor. In 2013, he joined Prof. Martin Green’s lab at University of New South Wales, Australia as a postdoctoral fellow. In 2017, he moved back to Central South University as a full professor. His research interests are inorganic solar cells and lithium ion batteries.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scib.2019.04.013.
Mingzhen Liu got her undergraduate degree at University of Bristol and pursued her MPhil at University of Cambridge. Later she got Ph.D. degree at University of Oxford. In 2016, she joined University of Electronic Science and Technology of China and now she serves as the vice-dean of School of Materials & Energy. Her research focuses on perovskite materials and related devices.

Liming Ding got his Ph.D. degree from University of Science and Technology of China. He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked with Frank Karasz and Tom Russell at PSE, UMASS Amherst. He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. Currently, his research interests include perovskite solar cells, organic solar cells and photodetectors.